skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huang, Shenyang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many real-world networks evolve over time, and predicting the evolution of such networks remains a challenging task. Graph Neural Networks (GNNs) have shown empirical success for learning on static graphs, but they lack the ability to effectively learn from nodes and edges with different timestamps. Consequently, the prediction of future properties in temporal graphs remains a relatively under-explored area. In this paper, we aim to bridge this gap by introducing a principled framework, named GraphPulse. The framework combines two important techniques for the analysis of temporal graphs within a Newtonian framework. First, we employ the Mapper method, a key tool in topological data analysis, to extract essential clustering information from graph nodes. Next, we harness the sequential modeling capabilities of Recurrent Neural Networks (RNNs) for temporal reasoning regarding the graph's evolution. Through extensive experimentation, we demonstrate that our model enhances the ROC-AUC metric by 10.2% in comparison to the top-performing state-of-the-art method across various temporal networks. We provide the implementation of GraphPulse at https://github.com/kiarashamsi/GraphPulse. 
    more » « less
  2. We present the Temporal Graph Benchmark (TGB), a collection of challenging and diverse benchmark datasets for realistic, reproducible, and robust evaluation of machine learning models on temporal graphs. TGB datasets are of large scale, spanning years in duration, incorporate both node and edge-level prediction tasks and cover a diverse set of domains including social, trade, transaction, and transportation networks. For both tasks, we design evaluation protocols based on realistic use-cases. We extensively benchmark each dataset and find that the performance of common models can vary drastically across datasets. In addition, on dynamic node property prediction tasks, we show that simple methods often achieve superior performance compared to existing temporal graph models. We believe that these findings open up opportunities for future research on temporal graphs. Finally, TGB provides an automated machine learning pipeline for reproducible and accessible temporal graph research, including data loading, experiment setup and performance evaluation. TGB will be maintained and updated on a regular basis and welcomes community feedback. TGB datasets, data loaders, example codes, evaluation setup, and leaderboards are publicly available at https://tgb.complexdatalab.com/. 
    more » « less